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ABSTRACT

This thesis compares the outputs of the ionospheric
propagation prediction model ADVANCED PROPHET, 4.3 to
measurements of propagation mode delay for a High Frequency
communications link between Monterey and San Diego,
California.

Mode delay variations throughout the day are presented for
experimental data and PROPHET predictions. A margin of error
of less than 0.5 msec was considered acceptable and the number
of acceptable predictions per day was generated. Acceptable
predicted data collected over the test period was analyzed to
establish which hours of the day PROPHET accurately predicts
propagation mode delay, independent of frequency, date and
power levels. During the first six hours of the day PROPHET
data tracks experimental data for mode delay change patterns.
On a daily basis, predictions are best between 1400 and 1700
GMT (0600 and 0900 local time), although patterns could not be
established for other hours of the day.

Predicted mode delay percentage distributions show greater

correlation during the first three hours of the morning and at
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I. INTRODUCTION

The concept of an electrical conducting layer in the
atmosphere dates back to the mid-19th century. Shortly after
the invention of radio, when communications distances began to
increase, the relation between propagated waves and this
electrical layer, now known as the ionosphere was observed.
Since then, many studies have been conducted on the
characteristics of the ionosphere and its effects on radio
communications.

The principal use of the ionosphere is in the High
Frequency (HF) band. Since communication in the HF band
depends on ionospheric wave reflection, which is continuously
changing due to daily, seasonal, and solar conditions, the
effect of the changing ionosphere on radio communications must
be considered. Ionospheric communication, when reliable, has
several advantages over other methods. The 1low cost,
simplicity, and portability of equipment are advantages over
other communications methods that may be more reliable.
Communications via the ionosphere is wide spread among CIS and
third-world countries and is being given consideration as a
viable alternative by other users.

It is impossible to maintain reliable communications
without considerating the changing environment in which it

occurs. Hence, it 1is important to have knowledge of




ionospheric characteristics and the elements that affect it
such as time of day, season, location, and solar activity [1].

Computer models permit the analysis of HF wave propagation
parameters and can predict propagation channels that will
support communications.

A project named Polar Equatorial Near-Vertical Incidence
Skywave Experiment (PENEX) which acquires calibrated field
strength measurements from ionospheric radio transmissions is
creating a data base for comparison with different ionospheric
propagation prediction models. In addition, as part of the
PENEX project, a communication link has been established for
the purpose of equipment testing, calibration and experimental
methodology.

After this communication link between Monterey, CA. and
San Diego, CA. is tested, project PENEX will be expanded to
include a transmitter site in Alaska, and receiver sites in
Alaska, California, Pennsylvania and Washington.

This thesis uses one of the computer models, ADVANCED
PROPHET 4.3 to predict HF skywave propagation for comparison
and correlation to the experimental data obtained for mode
delays in the communication link between Monterey and San
Diego.

It is also important to note that due to limited data
availability, the research analysis of this thesis is somewhat

restricted.




II. THEORETICAL BACKGROUND

A, THE IONOSPHERE

The ionosphere is the region of the atmosphere which
extends between 50 to 600 km where sufficient ionization
occurs in layers to affect radio transmissions. The
ionosphere is an electrically neutral region, since if it had
a given excess charge, then electrical forces would prevent
the formation of stable layers [2].

1. Photo-ionization

Photo-ionization occurs when the sun produces extreme
ultraviolet (EUV) light waves which in turn detach electrons
from neutral atoms in the Earth's atmosphere. When this takes
place, the atoms become positive ions as illustrated in Figure
1.

Since the atmosphere is bombarded by EUV of different
frequencies, different layers are formed at different
altitudes; higher frequency EUV waves penetrate the atmosphere
deeper, producing layers at lower altitudes while lower
frequency EUV penetrates less, producing higher altitude
layers [3].

2. Recombination

When collisions are produced between positive ions and

free electrons, neutral atoms are formed. Recombination can be

seen as the photo-ionization process in reverse.
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Figure 1. Photo-ionization of a neutral atom, A, by extreme
ultraviolet light from the sun, yielding a

positively charged ion, A’, and a free electron, e.
(Ref.1l, p. 18]




Between dawn and dusk, photo-ionization exceeds
recombination and maximum density layers are formed affecting
radio communications in greater percentages than during the
hours after dusk when the effect is reversed.

3. Ionospheric Layers

The ionosphere divides into three mayor layers, D, E ,
and F which is sub-divided into two others, F1 and F2.

The lowest layer is the D-layer which spans from 50 to
90 km. In the D-layer low frequency (LF) waves are refracted
while Medium Frequency (MF) and High Frequency (HF) waves are
absorbed. There are two types of absorption that affect the
HF band: deviative and nondeviative. Deviative absorption
occurs when the refractive index approaches zero, generally at
the apex of the trajectory, while nondeviative absorption
takes place when the refractive index approaches one and the
product between electron density and electron collision
frequency is high [2]. Another aspect of the D-layer is that
it disappears after sunset due to rapid recombination.

The E-layer is located between 90 and 130 km and is also
known as the "Kenelly-Heaviside layer". This layer is
characterized by strong diurnal variations. Recombination is
rapid after sunset and the layer diminishes as the night
advances. The Sporadic E-layer also occurs near 120 Km and
exists throughout the day at lower (equatorial) latitudes and
during late night for higher (polar) latitudes. The E-layer

reflects signals up to 20 MHz providing communications at




distances up to 2500 km per reflection.

The F-layer is formed between 150 and 600 km. During
the daytime this layer divides into two layers, Fl1 and F2,
located between 150 and 220 km and above 225 km, respectively.
Since these layers are at the highest altitudes, photo-
ionization occurs at the highest rate. At noon time in the
northern latitude winter, these layers are the closest to the
sun and the ionization rates are maximum. Because the
atmospheric density diminishes with altitude, the F-region
recombination process 1is relatively slow and at night the
F-layer 1is always present. Figure 2 shows the different
layers of the ionosphere.

4. Variations of the Ionosphere

Since the ionosphere is created by the effect of solar
radiation upon the atmosphere, the ionosphere will also vary
with the time of the day, season, location on the earth, solar
activity, and other similar factors.

These variations that affect the ionosphere will also
affect HF communications. The principal variations of the
ionosphere are:

* Diurnal (throughout the day)

* Seasonal (throughout the year)

* Location (geographic and geomagnetic)

* Solar Activity (Solar cycle and disturbances)

* Height (different layers ) [1]

Figure 3 illustrates how diurnal variations affect the
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Figure 2. Sketch of the various regions of the ionosphere

as it appears during the day and during the night.
(Ref.1, p. 17]
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Figure 3. Diurnal variation of electron density and the
formation of ionospheric layers. [Ref.6, p. 21]




formation of ionospheric layers.
5. Ray Tracing

In order to determine the amplitude, phase,
polarization, flight time, etc. of the transmitted wave, it is
necessary to determine the ray path between the transmitter
and the receiver. Determining the ray path seems to be a
simple task but in practice it is not. Factors affecting the
ray path are the orientation and intensity of the earth’'s
magnetic fields, the collision frequency of electrons and
electron density variations within the layers. Thus,
calculations are much more complex for the real-world than for
the assumption that the ionosphere is a homogeneous layer.

6. Ray Paths in the Ionosphere

The path followed by a wave reflected from the
ionosphere depends on the incidence angle at the ionosphere.
After entering the ionosphere, a wave can take different
paths. It could reach the receiver via one hop, 1i.e.,
bouncing off the ionosphere once, or through multiple hops.
Reflection between the different layers in the ionosphere as
well as any combination of the above cases 1is also a
possibility. Figure 4 shows examples of different paths for

a wave using the ionosphere.
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IIT. THE MONTEREY-SAN DIEGO COMMUNICATION LINK

Before the polar region HF ionospheric communication link
for PENEX 1is installed, a test-bed link was established to
verify the operation of the equipment and software. For this
link, Monterey was designated as the transmitter site with San
Diego as the receiver site. The geographical latitude and
longitude used in the scenario files of ADVANCED PROPHET 4.3
are 36°37’ N latitude and 121°55’ W longitude for Monterey and
32743’ N latitude and 117°09’ W longitude for San Diego. The
transmit power for the tests is 2.5, 75 and 100 watts and the
frequencies are 5.604 and 11.004 MHz. The methodology of

experimentation is described in detail in Chapter IV.

A. LINK ANTENNAS

The description of the antenna characteristics for the
transmitter and receiver sites are essential for modeling the
skywave propagation and for the link power budgets.

1. Transmitting Antenna

The transmitting antenna utilized is a multiband dipole

which consists of a group of three half-wavelength dipcles
connected to a common transmission line. The multiband dipole
is designed to operate on 5.6, 11 and 16.8 MHz respectively.
For data collection purposes the antenna was operated at 5.604
and 11.004 MHz since 16 MHz propagation was very unlikely for
the test 1link. The data collected for the 11.004 MHz

11




frequency range was obtained for only one day, during the time
of this investigation.

Dipole lengths were 5.6, 11, and 16.8 MHz for 24.69,
13.05, and 8.53 meters, respectively. Since these dipoles are
center-fed, each has two elements half the dimensions given
above. Figure 5 shows the dipole antenna geometry details.
The separation between the dipoles is 0.3048 meters and the
upper and lower elements are at an elevation angle of 11.21°
and -11.21° respectively. The dipoles are fed by a 50 ohm
impedance coaxial cable connected to a 1:1 balun transformer.

2, Receiving Antenna

The receiver antenna in San Diego is a dipole,
containing three half-wavelength dipoles on one structure,
drooping from the center at -34°. It is designed to operate
at the same frequencies as the transmitting antenna.

The half lengths of each element are 12.73 m., 6.48
m., and 4.24 meters for frequencies 5.6, 11, and 16.8 MHz
respectively. The separation between elements is 12.7 cm and
the feed line is a 50 ohm coaxial cable. Figure 6 shows the
details of the receiver antenna.
3. Antenna Simulation

The transmit antenna designs were modeled by a Naval
Postgraduate School student using the Numerical
Electromagnetics Code (NEC) which in turn provided patterns
for ADVANCED PROPHET 4.3. Figures 7 and 8 show radiation

patterns from NEC. In ADVANCED PROPHET 4.3, these patterns

12
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Figure 6. San Diego Drooping Dipole Antenna
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are required only for elevation angles of 6, 20, 40, 50, 70,
and 90 degrees.

Since radiation pattern definition in ADVANCED PROPHET
4.3 is for the entire HF band and for only integer values of
frequency, the pattern for 5.6 MHz was used for 2, 3, 4, 5, 6,
7, and 8 MHz. Likewise, the 11 MHz pattern was used for 9,
10,11,12 and 13 MHz, while the 16.8 MHz radiation pattern was
used for 14, 15, 16, 17, 18, 19, 20, 25, and 30 MHz. Figures
9 and 10 show the radiation patterns and antenna

characteristics used by ADVANCED PROPHET 4.3.
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ELEVATION PATTERN AT 0 Deg AZWAF = 11.0 MHz

ELEVATION PATTERN AT 0 Deg AZIM.F=50 MHz

Figure 7. Elevation radiation patterns obtained by NEC for
the Multiband Dipole Antenna
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ELEVATION PATTERN AT 0 Deg AZIM., =11 Mhz

ELEVATION PATTERN AT 0 Deg AZIM., {=5.8 Mhx

Figure 8. Elevation radiation patterns obtained by NEC for
the Drooping Dipole Antenna
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Figure 9. Elevation radiation patterns used by PROPHET for
the Multiband Dipole Antenna
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Figure 10. Elevation radiation patterns used by PROPHET for
the Drooping Dipole Antenna




IV. COMPARISON OF EXPERIMENTAL DATA WITH PROPHET PREDICTIONS

A. EXPERIMENTAL DATA

The following data are collected via PENEX equipment and
software at the San Diego receiver site. The PENEX system
uses direct sequence spread spectrum modulation (DSSS),
specifically phase shift keying (PSK), to transmit a reference
maximum length sequence. The system measures mode time delay
and signal strength using a quadrature-sampled, Fast Fourier
Transform (FFT) matched-filter signal processor. The time
delay measurements have a 25 millisecond (msec) resolution.
This system provides a precise time delay measurement as well
as consistent signal strength measurements.

Figure 11 shows an example of correlation vector plots
resulting from cross correlation of the reference sequence
with the digitized HF data. The upper plot is the raw vector
(linear form), of approximately 10 msec of data. Since the
digitizing rate is 39.0625 MHz, each bin is 25.6 microseconds.
In order to determine the mode delay, delta t, and the value
of the correlation peak, this vector is scanned to locate the
peaks, record the corresponding correlation peak values, and
find the distances between adjacent peaks (in terms of the
intervening bin count). The number of intervening bins is
then multiplied by the 25.6 microsecond duration of each bin,

yielding the mode delay, delta t. Next, the value of the

20
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correlation peak is mapped, through a calibration curve, to
received voltage and later, through the CCIR field strength
equation, to field strength. It is important to note that the
dB value obtained for all three modes in Figure 11 is not the

field strength but rather a processing gain measurement

(20*LOG{max correlation/noise floor}).

The information produced by the PENEX team consists of mode
delay vs. real time graphs for five different days, as shown
on Table 1; three different transmission power levels and two
frequencies were used.

TABLE 1. DATE OF TRANSMISSICN, FREQUENCY AND POWER USED
BY THE MONTEREY-SAN DIEGO COMMUNICATION LINK.

Date Frequency (MHz) Power (watts)
28 Aug 92 5.604 2.50
02 Oct 92 5.604 75.00
03 Oct 92 5.604 75.00
04 Oct 952 5.604 75.00
07 Oct 92 5.604 75.00
02 Oct 92 11.004 100.00

The plots shown in Figures 12 through 17 provide time delay
for 24 hours of each day. For the purpose of comparison, the
data considered were the data corresponding to each hour
interval. All mode delays were stored on file for later
comparisons. All times are in GMT, (the Monterey-San Diego

Link has a -8 hour offset). Table 2 shows the time

22
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Figure 14. Measured Mode Delay for 3 Oct 92.
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Figure 16. Measured Mode Delay for 7 Oct 92.
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correspondence between GMT and link local time.

TABLE 2. TIME CORRESPONDENCE BETWEEN
GMT AND LOCAL TIME

GMT Local Time GMT Local Time
00:00 16:00 12:00 04:00
01:00 17:00 13:00 05:00
02:00 18:00 14:00 06:00
03:00 19:00 15:00 07:00
04:00 20:00 16:00 08:00
05:00 | 21:00 17:00 09:00
06:00 22:00 18:00 10:00
07:00 23:00 19:00 11:00
08:00 00:00 20:00 12:00
09:00 01:00 21:00 13:00
10:00 02:00 22:00 14:00
11:00 03:00 23:00 15:00

B. ADVANCED PROPHET 4.3 RESULTS
1. Input Scenario Parameters for PROPHET

in order to have a controlled experiment and a basis for
comparison between experimental and computer predicted data,
an environment similar to the experimental scenario was
created. The first step in using ADVANCED PROPHET 4.3 is to
define the transmitter and receiver antenna characteristics
and receiving site noise. As mentioned in Chapter III the
radiation patterns for both antennas were obtained via NEC
simulation. Man-made noise was defined as QM-type (quasi-

minimum). The 10.7 cm. solar radio flux as well as Kp (the
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planetary magnetic index) were provided by Mr. Wayne Bratt of
the Naval Research and Development Center (NRAD) San Diego,
shown in Table 3. Since Kp is an average of the variation of

TABLE 3. MAGNETIC INDEX AND 10.7 cm. SOLAR RADIO FLUX
USED IN PROPHET SIMULATIONS.

Date 10.7 cm. Flux | Magnetic Index (Kp)
28 Aug 92 96 22112211
02 Oct 92 118 4 6 4 43 2 3 2
03 Oct 92 120 12222 332
04 Oct 92 120 12222332
07 Oct 92 137 33123221

the magnetic field on the earth over a three-hour period,
eight (8) constants for each day were divided in three hours
intervals. RAYTRACE, a program that is part of ADVANCED
PROPHET 4.3, was used to obtain the different time delays for
the Monterey-San Diego communications 1link. This program
calculates ray paths that propagate between the transmitter
and receiver antennas for a given frequency, time and
ionospheric parameters. These calculations are controlled by
input parameters such as launch angle, from which the initial,
increment and maximum launch angles are used to compute all
possible ray paths. RAYTRACE “"shoots" rays from the
transmitter and notes where each one "lands" in the vicinity
of the receiver. The two closest-landing rays are noted and
the ray which completes the path 1is calculated by

interpolation of nearby ray paths. The resulting ray is called
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a mode. The launch angle is then increased until a second
mode is obtained. The calculation process terminates when one
of the following conditions is met:

* The initial ray does not bounce off the ionosphere but

rather penetrates it.
* The launch angle reaches the maximum specified value.
* The maximum number of modes are reached by the program
itself.

The user in ADVANCED PROPHET can define ionospheric
parameters such as:

* Critical frequency of the E-region (foE).

* foEs if the Sporadic E-layer is to be considered.

* Critical frequency of the Fl1 region, foF1l.

* Critical frequency of the F2 region, foF2.

* F2-layer maximum density altitude, hmF2.

* F2-layer semi-thickness, YmF2.
When these parameters are specified, the ionosphere will be
assumed to be uniform throughout the region of propagation.
If these parameters are not user specified, ADVANCED PROPHET
uses internal models to calculate the parameters including
variations along the path due to time of day, solar activity
and the link geographical region [5].

2. ADVANCED PROPHET 4.3 Data Analysis

After all calculations are completed, two types of

output displays are generated. The first type of display

shows the parameters which defined the calculations and the

31




plots of the rays paths, as shown in Figure 18. The second
display details the results of the calculations in
alphanumerical fashion, as seen in Figure 19. For the
comparison process, the rubric, or unique descriptor,
corresponding to the mode delay (msec) was used to identify
the different mode path geometries; this delay is the total
calculated group delay.

To consider a propagation mode delay prediction valid
for the comparison, the signal to noise ratioc (SNR) should be
greater than 0 dB. From the alphanumeric output of the
Raytrace program the SNR can be determined for each of the
propagation mode delays. The other rubrics of the display
lists calculated propagation modes, such as number of hops,
ionospheric bounce region and trajectory losses. For the
analysis, data obtained from RAYTRACE alphanumeric output were

utilized.

C. DATA COMPARISON

Figures 20 through 25 show experimental and ADVANCED
PROPHET 4.3 generated mode delay data. Data plotted for a
given day were assigned "o" and "x" corresponding to PROPHET
and experimental data respectively. There is a similarity
between the data, especially in the 2 - 7 msec time frame.
PROPHET predicts mode delays that are greater than 15 msec,
which are not observed in the experiment. In addition,
PROPHET shcows increasing mode delays for the first six hours
of the day, 0000 through 0600 GMT (1600 through 2200, the
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Figure 18. Ray Paths predicted by ADVANCED PROPHET 4.3
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tee UNCLASSIFIED tee

RAYTRACE SYNOPSIS == LAUNCH ANGLES: START=

.00 END= 89.00 INC= 2.00

DATE: 10/ 7/92 TIME: 15:00 UT ATMOSPHERIC NOISE: NO BWIDTH: 1.240 XHZ
FREQ: 5.6 1l0cm FLUX: 137.0 Kp: 2.0 MANMADE NSE: QM SNR REQD: 12.0d8
MONTEREY LAT: 36.4 W LON: 121.6 ANT: S01 @ *OMNI®* PWR: 7%.00
SDIEGO LAT: 32.4 W LON: 117.1 ANT: SO0 @ *OMNI® RANGE: 599.3 XM
IONOSPHERE: FOE= 2.5 MHZ POFl= 3.5 MMZ FOF2= 9.9

HMP2s 344. XM YMF2#109.8 KM
NHOP 1 1 1 1 2 3
MOOE 1000000 1000000 1000000 3000000 3300000 3330000
ANGLE 18.65 23.%0 23.90 45.38 62.45 70.80
DELAY (MSEC) 2.147 2.23] 2.247 2.969 4.5%509 6.354
LOSS (DB) 127.29 147.38 169.46 120.01 128.06 138.42
GAIN TX/RX -4/ =3 -2/ 0 -1/ 0 i/ 3 1/ 4 1/ 4
1HZ SNR(DB) 49.66 34.04 12.24 66.92 60.37 49.94
ADJ SNR(DB) 18.73 3.11 -18.70 38.59 29.43 19.00
VIR HT1(XM) 110.11 140.86 143.92 326.29 303.14 302.23
VIR HT2(KM) .00 .00 .00 .00 302.03 302.66
VIR HT3 (KM) .00 .00 .00 .00 .00 300.04
RA>
*ee* UNCLASSIFIED e*»
RAYTRACE SYNOPSIS ~- LAUNCH ANGLES: START= .00 ENDw $9.00 INC= 2.00
DATE: 10/ 3/92 TIME: 16:00 UT ATMOSPHERIC NOISE: NO BWIDTH: 1.240 KHZ
FREQ: 5.6 10cm FLUX: 120.0 Kp: 3.0 MANMADE NSE: QM SNR REQD: 12.0d8
MONTEREY LAT: 36.4 W LON: 121.6 ANT: 501 @ *OMNI* PWR: 75.00
SDIEGO LAT: 32.4 W LON: 117.1 ANT: S00 @ *OMNI®* RANGE: 5$99.3 KM
IONOSPHERE: FOE= 2.9 MHZ PFOPls 4.1 MHZ PFOF2= 10.2

HMF2e 325, KM YMP2w113.5 KM
NHOP b 1 1 1 1 2
MoODE 1000000 2000000 2000000 2000000 3000000 3300000
ANGLE 17.98 29.99 43.63% 44.85% 48.10 63.08
DELAY (MSEC) 2.1318 2.364 2.873 3.067 3.122 4.438
LOSS (DB) 140.94 138.8¢4 135.38 176.66 129.37 137.99
GAIN TX/RX -4/ =3 0/ 2 o/ 2 1/ 3 1/ 3 1/ 4
1HZ SNR(DB) 35.2% 49.14 $0.80 9.77 $7.66 %0.82
ADY SNR(DB) 4.21 18.21 19.87 -31.17 26.72 19.89
VIR HT1(KM) 108.79 184.70 307.93 336.69 360.24 299.27
VIR HT2(KM) .00 .00 .00 .00 .00 298.23
gin HT3 (KM) .00 .00 .00 .00 .00 .00

>

Pigure 19. Alphanumeric output corresponding to
Raytrace predictions.
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Figure 22. Comparison between experimental and PROPHET

Mode Delay predictions for 3 Oct 92.
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Mode Delay predictions for 7 Oct 92.

39




T T T T T ~—r- >
° ° .
° o o o =
- ° ° ° 0 AR
§ ° ° ° w x
-é ° ° ° x x»
g ° z ox
B' ° o x
St R P
E 3
& 2
-
é P
g A8
Erag -
< 2
¢ | 02
>~ 4
a3
N
S T e S B

(spucoasm)Aeiop Ian ],

Zulu Hour

Figure 25. Comparison between experimental and PROPHET
Mode Delay predictions for 2 Oct 92.
(11.004 - 100 watts).

40




local time for San Diego), which is similar in some aspects to
experimental results. Single and multihop propagation of up
to six hops are predicted by PROPHET. The experimental data
plotted in Figures 12 to 16 shows only three modes.

In Figure 25 for 2 Oct 92, PROPHET data obtained at 11.004
MHz with 100 watts is close to the experimental data, where in
the early hours of the day, propagation is not supported by
the path. Good correspondence between experimental and
PROPHET data 1is noted between 1600 and 2400 GMT. ADVANCED
PROPHET 4.3 predicts mode delays above 4 msec that are not
shown in the experimental data.

For further comparison between experimental and PROPHET
data, an hour by hour, day by day breakdown is provided in
Figures 26 through 31. These plots were created by counting
the times for which the experimental and predicted delays were
a different by less than 0.5 msec. All hours in which
propagation for both cases was not availalrle are marked with
an asterisk. From Figures 26 to 31 it is seen that maximum
correlation between PROPHET and experimental data occurs in
the early hours of the day and between 1400 and 1900 GMT.

The third comparison was calculation of the total
percentage per hour, over the five day period, in which the
time delay differences were less than 0.5 msec. In this
manner a global comparison is performed to more fully
appreciate how the percentages are distributed throughout the

day. Table 4 and Figure 32 show this comparison. All of the
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Figure 28. Mode Delay Approximation Distribution for
3 Oct 92
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comparisons and plotted results were made with the aid of

MATLABR programs.

TABLE 4. MODE DELAY APPROXIMATION PERCENTAGE DISTRIBUTION

GMT Percentage GMT Percentage
00:00 7.143 12:00 1.786
01:00 2.679 13:00 0.893
02:00 4.018 14:00 6.696
03:00 5.804 15:00 8.929
04:00 3.571 16:00 12.946
05:00 1.786 17:00 10.268
06:00 4.911 18:00 2.678
07:00 6.250 15:00 0.446
08:00 3.125 20:00 0.446
05:00 4.911 21:00 0.893
10:00 2.232 22:00 2.232
11:00 2.679 23:00 2.678
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V. CONCLUSIONS AND RECOMMENDATIONS

The field measurements indicate that the PROPHET
propagation predictions are most accurate for the early hours
of 1400 until 1700 GMT of each day. Data taken on 2 Oct 92 at
11.004 MHz show that when skywave propagation is supported,
the experimental and program predictions are almost identical,
for mode delays of 1less than 4 msec. As expected,
experimental and program results are similar also for the part
of the day when skywave propagation is not supported by the
ionosphere.

Field data taken at 5.6 MHz showed good agreement with
PROPHET propagation predictions. Between 0000 and 0600 GMT,
PROPHET predicted six mode delay groups (multi-hop
propagation) with delays that exceed 15 msec. This same trend
was observed experimentally; however, only three mode delay
groups were present between 0000 and 0400 GMT.

It can be concluded that the best correspondence between
predictions and measurements occurs at 0000 GMT and between
1400 and 1700 GMT. Reasonable correspondence occurs for the
hours of sunset and midnight on the Monterey-San Diego path.

In comparing ADVANCED PROPHET 4.3 predictions with
experimental field data, it is preferable to input the values
of the required ionospheric variables corresponding to the

time the measurements were taken. Since these values were not
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available for the data used in this research, approximate
values based on PROPHET's internally generated parameter set
were used.

More data is needed, covering the entire HF band, and will
be collected as the equipment and software are refined. Once
the questionable CCIR recommendations for measuring signal
strength are resolved, SNR can be measured by standard
procedures and compared with PROPHET predictions. Additional
ionospheric propagation software such as IONCAP, ICEPAC, ASAPS

and AMBCOM should be evaluated along with PROPHET.
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